Document Type : Original Article

Authors

1 Space Transportation Systems Engineering Research Group,, Space Transportation Research Institute, Iranian Space Research Center

2 Mechanical Engineering(Manufacturing), University of Tehran

3 No. 182, Shahid Teymuri Blvd., Tarasht, Tehran, Iran

Abstract

This research focused on investigating additive manufacturing factors using Selective Laser Melting (SLM) with maraging grade 300 steel powder via Taguchi method. The main objectives were to explore the influence of process parameters and achieve optimal levels. Experiments were exactly designed with the assistance of Mini-Tab software. The study specifically targeted scanning speed, hatch distance, layer thickness, and scanning strategy for fabricating tensile samples. Comprehensive characterization using optical and scanning electron microscopes examined mechanical and microstructural properties. The analysis revealed that the optimal levels for achieving desirable results were as follows: scanning speed of 100 mm/s, layer thickness of 20 microns, hatch distance of 0.15 mm, and implementing the Stripe scanning strategy in the XY direction. The output results showed significant findings, with a final tensile strength of 951 MPa, porosity measured at 0.4%, and an impressive relative density of 99.6%. In conclusion, this research provides valuable insights into optimizing the selective laser melting process with maraging grade 300 steel, offering crucial knowledge about effective process parameters for obtaining optimal mechanical and microstructural properties in the additive manufacturing of tensile samples.

Keywords

Main Subjects