Document Type : Original Article


1 Researcher/Department of Energy Storage-Institute of Mechanics

2 Department of Energy Storage-Institute of Mechanics


One of the reasons for the increasing popularity of lithium- ion batteries is the improvement of their rate capability and power density. All components of a battery, including the anode, cathode, electrolyte, and separator, can limit the capability of lithium-ion batteries. While most efforts have focused on the new electrode architecture and electrolyte formulation to improve battery performance, studies on separators have focused mainly on their mechanical and physical properties and little attention has been paid to their effect on the performance of lithium-ion batteries. In this study, a comprehensive study of the physical, thermal and electrochemical properties of disassembled high drain lithium- ion battery separator (HDLIB) with high discharge rate capability and commercial polyethylene separator with a thickness of 16µm (G16) is reported. According to the research, it has been shown that HDLIB separator has 26% less contact angle and better wettability than commercial polyethylene separator. Also, HDLIB separator at 150°C has shrunk by 55.6% less than G16, which may be due to the presence of boehmite ceramic particles in its structure. In addition, it shows that HDLIB separator can play an important role in improving the rate performance and safety of lithium- ion batteries


Main Subjects

##  م. زارعی جلیانی، ش. بکتاشیان، م. بابایی، ع. قاسمی، ر. اقرء، بررسی الکتروشیمیایی تشکیل لایه SEI در فرایند فرماسیون آند گرافیت طبیعی در باتری لیتیوم-یون، مواد پیشرفته و پوشش‌های نوین، 1397[online] 7(26 ), pp.1779-1786. Available:
##   M. E. Sotomayor et al., “Ultra-thick battery electrodes for high gravimetric and volumetric energy density Li-ion batteries,” J. Power Sources, vol. 437, p. 226923, 2019, doi:
## J. S. Sander, R. M. Erb, L. Li, A. Gurijala, and Y.-M. Chiang, “High-performance battery electrodes via magnetic templating,” Nat. Energy, vol. 1, no. 8, p. 16099, 2016, doi: 10.1038/nenergy.2016.99.##
## A. M. Colclasure, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, and K. Smith, “Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells while Avoiding Lithium Plating,” J. Electrochem. Soc., vol. 166, no. 8, pp. A1412–A1424, 2019, doi: 10.1149/2.0451908jes.##
## Z. Du, D. L. Wood, and I. Belharouak, “Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes,” Electrochem. commun., vol. 103, pp. 109–113, 2019, doi:
##   S. Kalnaus et al., “Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading,” J. Power Sources, vol. 378, pp. 139–145, 2018, doi:
##  L. Peng et al., “Three-Dimensional Coating Layer Modified Polyolefin Ceramic-Coated Separators to Enhance the Safety Performance of Lithium-Ion Batteries,” J. Electrochem. Soc., vol. 166, no. 10, pp. A2111–A2120, 2019, doi: 10.1149/2.1141910jes.##
##    J. Li, C. Daniel, and D. Wood, “Materials processing for lithium-ion batteries,” J. Power Sources, vol. 196, no. 5, pp. 2452–2460, 2011, doi:
## X. Huang and J. Hitt, “Lithium ion battery separators: Development and performance characterization of a composite membrane,” J. Memb. Sci., vol. 425–426, pp. 163–168, 2013, doi:
## A. Nahvi Bayani, M. H. Moghim, S. Bahadorikhalili, and A. Ghasemi, “Aluminum Hydroxide-Based Flame-Retardant Composite Separator for Lithium-Ion Batteries,” J. Renew. Energy Environ., vol. 6, no. 2, pp. 15–21, 2019, doi: 10.30501/jree.2019.95923.##
##   S. S. Zhang, “A review on the separators of liquid electrolyte Li-ion batteries,” J. Power Sources, vol. 164, no. 1, pp. 351–364, 2007, doi:
##  V. Deimede and C. Elmasides, “Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments,” Energy Technol., vol. 3, no. 5, pp. 453–468, May 2015, doi:
## P. Arora and Z. (John) Zhang, “Battery Separators,” Chem. Rev., vol. 104, no. 10, pp. 4419–4462, Oct. 2004, doi: 10.1021/cr020738u.##