Document Type : Original Article


1 Space Transportation Research Institute, Iranian Space Research Center, Tehran, IranIranian Space Research Center

2 Space Transportation Research Institute, Iranian Space Research Center, Tehran, Iran


In this research, the performance of a monopropellant hydrazine thruster in atmospheric conditions has been investigated experimentally. For this purpose, after designing and constructing the thruster according to the functional requirements of the thruster, a test was designed and after that, the desired thruster was tested in atmospheric conditions. The test results show that the tested thruster can generate 2000 pulses with a width of 0.5 seconds and a periodicity of one second with reproducibility. It was shown that the life of this thruster is more than 2000 pulses and the thruster was able to produce very small beats of 3 mNS in reproducibility. Also, comparing the results of the current thruster sample with the experimental results of other thrusters showed how by selecting the appropriate dimensions for the injector, catalyst chamber and nozzle, the characteristics of pressure rise time, minimum impulse, pulse centroid and pressure drop time in the Thruster can be well controlled. Reducing the injector diameter (by keeping the flow rate constant by increasing the injection pressure) reduces the impulse (within a constant pulse width) and increases the pressure rise time. Reducing the dimensions of the catalyst chamber also reduces the increase and decrease time of the pressure, resulting in a smaller pulse centroid


Main Subjects

[1] H. Jung, J. H. Kim, "Test and Evaluation of a 70 N-class Hydrazine Thruster for Application to the Precise Attitude Control of Space Vehicles," in 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, 2013.
[2] T. W. Price, D. D. Evans, "The Status of Monopropellant Hydrazine Technology," 1968.
[3] S. Baek, W. Jung, H. Kwon, S. Kang, "Development of High-Performance Green-Monopropellant Thruster with Hydrogen Peroxide and Ethanol," Journal of Propulsion and Power, vol. 34, no. 5, pp. 1256-, 2018.
[4] A. Oren, and C. Gutfinger. "Performance evaluation of an augmented hydrazine thruster." In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p. 3761. (2000).
[5] B. Hou, X. Wang, T. Li, and T. Zhang. "Steady-state behavior of liquid fuel hydrazine decomposition in packed bed." AIChE Journal 61, no. 3 (2015): 1064-1080.
[6] J. S. Kim, H. Jung, S. H. Bae, D. S. Bae, and J. H. Kim. "Performance Evaluation of a 70 N Hydrazine Thruster According to the Variation of Characteristic Length." In 51st AIAA/SAE/ASEE Joint Propulsion Conference, p. 4162. (2015).
[7] B. W. Schmitz و W. W. Wilson, “Long Life Monopropellant Hydrazine Engine Development Program,” Air Force Rocket Propulsion Laboratory, Edwards, California, 1971.
[8] P. I. Moynihan, “Minimum Impulse Tests of 0.45-N Liquid Hydrazine Catalytic Thrusters,” JPL Quarterly Technical Review, 1972.
]9[ م. ع. امیری فر و همکاران، "ساخت کاتالیست ایریدیوم/ آلومینا برای استفاده در یک رانشگر تک پیشرانه هیدرازینی،" 139950140003001292، 17 اردیبهشت 1399.
[10] Z. Amirsardari, Y. Vahidshad, M. A. Amirifar, et al, “Method for Preventing the Contamination of Iridium Nanocatalyst during Plasma Arc Welding Procedure,” Journal of Failure Analysis and Prevention, 2021.
[11] Z. Amirsardari, A. Dourani, M. A. Amirifar, et al, “Dentate number and functionality of O, N-donor ligands for the growth and catalytic reaction of iridium nanoparticles,” Chemical Papers,Vol 74, P 3233-3241, 2020.
[12] Z. Amirsardari, A. Dourani, M. A. Amirifar, et al, “Comparative characterization of iridium loading on catalyst assessment under different conditions,” International Journal of Minerals, Metallurgy and Materials, Vol 28, P 1233-1239, 2021.
]13[ م. ع. امیری فر و همکاران، "شیر تراستر سلونوئیدی با ساختار فشرده و سازگار با هیدرازین،" 139850140003007661، 4 آذر 1398.
[14] S. Krishnamachary, S. K. Mohan, S. G. Kulkarni, D. Jayaraman, M. R. Rao, L. D. Singh and S. K. Prasad, "Propellant Grade Hydrazine in Mono/Bi-propellant Thrusters: Preparation and Performance Evaluation," Defence Science Journal, vol. 65, no. 1, pp. 31-38, 2015.
[15] B. Schmitz, D. Williams, W. Smith and D. Maybee, "Design and Scaling Criteria for Monopropellant Hydrazine Rocket Engines and Gas Generators Employing Shell 405 Catalyst," in 2nd Propulsion Joint Specialist Conference, 2012.
[16] G. P. Sutton and O. Biblarze, Rocket Propulsion Elements, 7th ed., Wiley, 2001.
]17[ م. ع. امیری فر و همکاران، "آزمون گر کاتالیستی تک پیشرانه هیدرازین با کنترل دقیق جریان ورودی به بستر،" 139850140003006115، 15 مهر 1398.
]18[ ع. رجبی، م. ع. امیری فر، ز. امیرسرداری و همکاران، "آزمون گرم نمونه آزمایشگاهی رانشگر تک پیشرانه هیدرازینی،" چهارمین نشست تخصصی دستاوردهای علمی و فنی پژوهشگاه فضایی ایران، 1397.