Document Type : Original Article

Authors

Department of Materials Engineering, University of Tabriz, Tabriz, Iran

Abstract

Although regarding low density and high ratio of strength to weight of titanium, the application of this metal is restricted in space industry due to its low surface properties including low wear resistance which could lead to the cold weld. For improving this property of titanium, applying protective coatings is effective. The physical parameters of wear resistance, adhesion and surface microhardness are impressive and could avoid occurance of cold weld. Therefore, in the present study, by applying plasma nitriding on chromium layer on titanium used in space structures, its tribological behavior (wear resistance, adhesion and surface microhardness) has been investigated. The results confirmed the formation of nitride chromium thin layer on titanium substrate due to the applying plasma nitriding on the chromium layer , which increasing the surface microhardness up to 1109 HV and improving the wear resistance and adhesion subsequently. The coefficient of friction is also decreased to 0.16,which can well prevent the occurrence of cold weld

Keywords

Main Subjects

[1]     Y. Chen et al., “Manufacturing of graded titanium scaffolds using a novel space holder technique,” Bioact. Mater., vol. 2, no. 4, pp. 248–252, 2017, doi: 10.1016/j.bioactmat.2017.07.001.
[2]     Z. su Wang, Q. feng Guo, F. Jiang, B. Chen, Q. wen Wu, and G. qiang Wang, “Stiffness design of cantilevered structure with space optics load,” Optik (Stuttg)., vol. 184, no. March, pp. 330–338, 2019, doi: 10.1016/j.ijleo.2019.03.076.
[3]     N. Yanar et al., “Investigation of the performance behavior of a forward osmosis membrane system using various feed spacer materials fabricated by 3D printing technique,” Chemosphere, vol. 202, pp. 708–715, 2018, doi: 10.1016/j.chemosphere.2018.03.147.
[4]     S. A. Naziri Mehrabani, R. Ahmadzadeh, N. Abdian, A. Taghizadeh Tabrizi, and H. Aghajani, “Synthesis of Ni-GO nanocomposite coatings: Corrosion evaluation,” Surfaces and Interfaces, vol. 20, no. May, p. 100546, 2020, doi: 10.1016/j.surfin.2020.100546.
[5]     T. Sahraoui, S. Guessasma, N. E. Fenineche, G. Montavon, and C. Coddet, “Friction and wear behaviour prediction of HVOF coatings and electroplated hard chromium using neural computation,” Mater. Lett., vol. 58, no. 5, pp. 654–660, 2004, doi: 10.1016/j.matlet.2003.06.010.
[6]     C. L. Chang, C. T. Ho, P. H. Chen, W. C. Chen, D. Y. Wang, and W. Y. Wu, “Synergetic effect for improved deposition of titanium nitride films,” Surf. Coatings Technol., vol. 350, no. January, pp. 1098–1104, 2018, doi: 10.1016/j.surfcoat.2018.02.019.
[7]     A. T. Tabrizi, H. Aghajani, H. Saghafian, and F. F. Laleh, “Correction of Archard equation for wear behavior of modified pure titanium,” Tribol. Int., no. November, p. 106772, 2020, doi: 10.1016/j.triboint.2020.106772.
[8]     D. Del Pianta, J. Frayret, C. Gleyzes, C. Cugnet, J. C. Dupin, and I. Le Hecho, “Determination of the chromium(III) reduction mechanism during chromium electroplating,” Electrochim. Acta, vol. 284, pp. 234–241, 2018, doi: 10.1016/j.electacta.2018.07.114.
[9]     W. Deqing, S. Ziyuan, and K. Tangshan, “Composite plating of hard chromium on aluminum substrate,” Surf. Coatings Technol., vol. 191, no. 2–3, pp. 324–329, 2005, doi: 10.1016/j.surfcoat.2004.03.049.
[10]   A. L. M. Carvalho and H. J. C. Voorwald, “Influence of shot peening and hard chromium electroplating on the fatigue strength of 7050-T7451 aluminum alloy,” Int. J. Fatigue, vol. 29, no. 7, pp. 1282–1291, 2007, doi: 10.1016/j.ijfatigue.2006.10.003.
[11]   V. S. Protsenko, F. I. Danilov, V. O. Gordiienko, S. C. Kwon, M. Kim, and J. Y. Lee, “Electrodeposition of hard nanocrystalline chrome from aqueous sulfate trivalent chromium bath,” Thin Solid Films, vol. 520, no. 1, pp. 380–383, 2011, doi: 10.1016/j.tsf.2011.07.036.
[12]   S. E. Elsaka, I. M. Hamouda, Y. A. Elewady, O. B. Abouelatta, and M. V. Swain, “Effect of chromium interlayer on the shear bond strength between porcelain and pure titanium,” Dent. Mater., vol. 26, no. 8, pp. 793–798, 2010, doi: 10.1016/j.dental.2010.04.004.
[13]   M. R. Saghi Beyragh, A. Sh. Khameneh, and S. Norouzi, “A comparative research on corrosion behavior of a standard, crack-free and duplex hard chromium coatings,” Surf. Coatings Technol., vol. 205, no. 7, pp. 2605–2610, 2010, doi: 10.1016/j.surfcoat.2010.10.009.
[14]   S. H. Sarraf, M. Soltanieh, and H. Aghajani, “Repairing the cracks network of hard chromium electroplated layers using plasma nitriding technique,” Vacuum, vol. 127, pp. 1–9, 2016, doi: 10.1016/j.vacuum.2016.02.001.
[15]   L. Wang, K. S. Nam, and S. C. Kwon, “Transmission electron microscopy study of plasma nitriding of electroplated chromium coating,” Appl. Surf. Sci., vol. 207, no. 1–4, pp. 372–377, 2003, doi: 10.1016/S0169-4332(03)00007-2.
[16]   P. K. Ajikumar et al., “Morphology and growth aspects of Cr(N) phases on gas nitridation of electroplated chromium on AISI 316 LN stainless steel,” Surf. Coatings Technol., vol. 201, no. 1–2, pp. 102–107, 2006, doi: 10.1016/j.surfcoat.2005.10.043.
 
 
 
 
 
 
 
 
 
 
 
 
 
[17]   E. Menthe and K. T. Rie, “Plasma nitriding and plasma nitrocarburizing of electroplated hard chromium to increase the wear and the corrosion properties,” Surf. Coatings Technol., vol. 112, no. 1–3, pp. 217–220, 1999, doi: 10.1016/S0257-8972(98)00793-2.
[18]   A. T. Tabrizi, H. Aghajani, and F. F. Laleh, “Tribological characterization of hybrid chromium nitride thin layer synthesized on titanium,” Surf. Coatings Technol., vol. 419, no. May, p. 127317, 2021, doi: 10.1016/j.surfcoat.2021.127317.
[19]   M. Keshavarz Hedayati, F. Mahboubi, and T. Nickchi, “Comparison of conventional and active screen plasma nitriding of hard chromium electroplated steel,” Vacuum, vol. 83, no. 8, pp. 1123–1128, 2009, doi: 10.1016/j.vacuum.2009.02.005.
[20]   E. Lunarska, K. Nikiforow, T. Wierzchon, and I. Ulbin-Pokorska, “Effect of plasma nitriding on hydrogen behavior in electroplated chromium coating,” Surf. Coatings Technol., vol. 145, no. 1–3, pp. 139–145, 2001, doi: 10.1016/S0257-8972(01)01287-7.
[21]   S. Han et al., “Corrosion and tribological studies of chromium nitride coated on steel with an interlayer of electroplated chromium,” Surf. Coatings Technol., vol. 133–134, pp. 460–465, 2000, doi: 10.1016/S0257-8972(00)00979-8.