Document Type : Original Article

Authors

amirkabir university of technology

Abstract

Microwave electrothermal thruster is the propellant that converts microwave energy into heat energy. nowadays, with the technology development of electric thrusters are very important in terms of producing high specific impact and low fuel consumption. These thrusters can produce acceptable thrust over a long period of time, which are suitable for spiral orbital transfer missions. In this type of propulsion, the propellant gas is heated and expanded, which produces the propulsion force. This paper presents the conceptual design process of a microwave thermal thruster. The propulsion system includes propellant, propulsion storage tank, amplification chamber, and power plant, which includes batteries and solar arrays. In this paper, the method of calculating the mass and the characteristics of each are presented in detail. Finally, in order to validate the conceptual design process presented in this study, the necessary studies have been discussed. Conceptual design has been done for a 100 kg satellite, which is desirable to travel in a week from an orbital height of 300 to 800 km during a spiral treansfer. The propulsion system and mass of each subsystem are obtained.

Keywords

Main Subjects

  • Kuninaka, , Sh. Satori, I. Funaki, Y. Shimizu, K. Toki. Endurance Test of Microwave Discharge Ion Thruster System for Asteroid Sample Return Midon Muses-C. IEPC-97-137, 1997.

 

  • I. FunakiH.. Kuninaka, K. Toki, Y. Shimizu, K. Nishiyama, . Y. "Verification Tests of Carbon-Carbon Composite Grids for Microwave Discharge Ion Thruster." Journal of Propulsion and Power 18, no. 1, 2002, pp. 169-75.

 

  • Koizumi, and H. Kuninaka. "Miniature Microwave Discharge Ion Thruster Driven by 1 Watt Microwave Power." Journal of Propulsion and Power 26, no. 3, 2010, 601-04.

 

  • K. LG. Parkin,. The Microwave Thermal Thruster and Its Application to the Launch Problem. California Institute of Technology, 2006.

 

  • . Parkin, Microwave Heat-Exchange Thruster and Method of Operating the Same. Google Patents, 2006.

 

  • P. Perczynski, B. "Mass Estimating Relationships for Manned Lunar Lander and Ascent Vehicle Concept Exploration." Trans Lunar Injection (TLI) 3, no. 2.6, 2008.

 

  • Adusumilli Performance evaluation und optimization of high power 14.5-GHz miniature Microwave Electro-thermal Thruster, Master's Thesis, Pennsylvania State University, May 2011.

 

  • Christopher, Jr. DeForce. Computational Modeling of an 8-GHz Microwave Electro-thermal Thruster, Master's Thesis, Pennsylvania State University, May 2011.

 

  • ع. حاجی‌پور، عارف و ر. ندافی، ،طراحی مفهومی رانشگر یونی براساس معیار تصمیم گیری AHP،دومین کنفرانس سراسری دانش و فناوری مهندسی مکانیک و برق ایران،تهران،1395.

 

  • ف. میری، م. فکور، ع. ابراهیمی "طراحی رانشگر الکتریکی برای تأمین نیروهای انتقال مداری سامانه‌های فضایی"، پایان نامه کارشناسی ارشد دانشگاه تهران، بهمن 1392.

 

  • ا. صدیق، ر. ابراهیمی، ر" شبیه‌سازی عددی یک بعدی عملکرد رانشگر پالس پلاسمایی با پیشران جامد"، مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها، دوره 7 شماره 1، بهار 1396.

 

  • ع. رضایی‌ها، و م. فرشچی، "آنالیز پارامترهای موثر در طراحی رانشگر پالس پلاسمایی" ،دهمین همایش انجمن هوافضای ایران، تهران، 1398.

 

  • Brandenburg M. Micci. "The microwave electro-thermal (MET) thruster: A new technology for satellite propulsion and attitude control", AIP Conference Proceedings, Vol. 361, pp. 185-192.

 

  • Hill, C. Peterson, Mechanics and Thermodynamics of Propulsion, 2nd edition, Addison-Wesley Publishing Company, Inc., New York, 1992.

 

  • Power, R. Chapman. "Development of a High power Microwave Thruster, with a magnetic nozzle, for Space applications", 24 Microwave Power Symposium, August 21-23, 1989.

 

  • Zandbergen, Tank (Assembly) Mass Estimation, Published by Department of Space Engineering at Delft University of Technology.Datasheets for Astrium Power Processing Units for Electric Propulsion, EADS Company, 2012.

 

  • P. and J. P. Fenn. "Experimental Determination of the Discharge Coeflicient for Critical Flow through an Axisymmetric Nozzle", ALMA, Vol. 16, Jan. 1978, p. 41-46.

 

  • Griffin, J. French. Space Vehicle Design, 2nd edition, AIAA Publication, 2004.

 

  • Humble,; Henry, W. Larson Space Propulsion Analysis and Design, 18 edition, McGraw Hill, 1995.

 

  •  
  • Datasheets for Astrium Power Processing Units for Electric Propulsion, EADS Company, 2012.

 

  • Brown, Satellite Power System (SPS) Magnetron Tube assessment Study, Published by Raytheon Company for Marshall Space Flight Center - NASA, 1981.

 

  • Venkateswaren, C. Merkle. "Numerical Investigation of Bluff Body Stabilized Microwave Plasmas", AIAA 22nd Fluid Dynamics, Plasma Dynamics & Lasers Conference, June 24-26, 1991.

 

  • Capalungan, Design and Development of a 30-GHz Microwave Electro thermal Thruster, Master's Thesis, Pennsylvania State University, August 2011