dynamics
Hossein Maghsoudi Dehaghani; Amirreza Kosari; Mahdi Fakoor; Masoud Khoshsima
Abstract
Due to the unique characteristics of the geo-synchronous orbit and the importance of establishing a satellite in this flying corridor, it is necessary to investigate the effect of environmental disturbances on the orbital elements and to maintain the satellite orbital elements in order to increase the ...
Read More
Due to the unique characteristics of the geo-synchronous orbit and the importance of establishing a satellite in this flying corridor, it is necessary to investigate the effect of environmental disturbances on the orbital elements and to maintain the satellite orbital elements in order to increase the longevity and operation of a satellite in this orbit. A satellite in earth orbit is also always exposed to various environmental disturbances such as earth gravity gradient force, gravity of the moon and sun, solar radiation pressure, and so on. For this reason, it is constantly deviating from its original path and needs to study the effect of environmental disturbances on the orbital elements in order to properly correct the disturbed orbital parameters. To achieve the above goals, in this paper, we try to investigate the effect of the environmental perturbations on the orbital characteristics by simulating the satellite translational dynamic behavior in the presence of environmental disturbances. Then, utilizing the genetic algorithm and fuzzy logic approach, an attempt was made to modify the compensation logic of the orbital elements correction, so that, the satellite may be forced to remain in its limited operational orbital window during the mission lifetime. The proposed method could improve the problem-solving operational effectiveness to maintain the position of the satellite with the criterion of minimizing fuel consumption. The case study simulation results may indicate the capability of the proposed approach in satisfying the performance requirements of the satellite station-keeping maneuver.